WHATS on Your menur

Finding the value in your customer's complex choices

Chris Moore, IPSOS \& Aaron Hill,
Sawtooth Software

Sawtooth
Software

Introduction

Ask or Observe

In-market product tests
Direct questions
Wait and see what your competitors do
Monitor what they are chatting about online
Hypothetical tests, such as conjoint analysis

Standard Choice Models

Which one of these options would you buy?

Fettucini Alfredo
with Chicken
Includes 1 side
dish
$\$ 10.99$

Teriyaki Salmon
Includes 2 side
dishes
$\$ 14.99$

Sawtooth
Sawtooth Software

Benefits of Choice Modelling

Able to test large number of combinations at little cost

Resulting models provide simulation capability, even for concepts not tested directly

But...
They are limited to a single independent choice

Sawtooth Software

But what about these situations?

Cell phone plan/phone purchase
Bundling telecommunications
Restaurant menus
Choosing features to add to a new car
Multi-subscription bundles
Business software suites
Cruise inclusions vs. add-ons
Insurance policy riders
Transportation
...and on and on

Menu Based Choice

Menu Based Choice exercises allow you to simultaneously measure multiple correlated decisions in situations where the consumer "creates" their own product bundle.

Delmonico's, New York City, 1899

Goal: Create a model for each item on the menu

Menu choices dependent on its price, configuration, but also other items price, configuration.

PD-US, https://en.wikipedia.org/w/index.php?curid=5848801

Top Sky deals in February

GREAT VALUE	NETFLIX INCLUDED	ONLINE EXCLUSIVE OFFER
Sly Sky Entertainment TV	Sky Entertainment TV + Ultimate On Demand \& Netflix	Shy $\begin{aligned} & \text { Sky Entertainment TV + } \\ & \text { Sports + HD }\end{aligned}$
\checkmark Sky Entertainment TV	\checkmark Entertainment \& Box Sets	\checkmark Entertainment \& HD \& Sports
$\checkmark 388$ channels + 20 HD	$\checkmark 388$ channels + 20 HD	$\checkmark 430$ channels + 62 HD
£22.00	f34.00	£50.00 sly
for 18 months	for 18 months	for 18 months
Prices may change during this period	Prices may change during this period	Prices may change during this period
(usually $£ 27.00$)	(usually $£ 39.00$)	(usually $£ 61.00$)
Upfront cost: $£ 25.00$	Upfront cost: $£ 20.00$	Upfront cost: $£ 25.00$
See deal	See deal	See deal
Over 300 channels including exclusive Sky Originals	Over 1,000 shows on demand from Sky Box Sets and Netfix all in a single pack - in stunning HD.	Watch live action from all 8 Sky Sports channels, in HD as standard, with the Complete Sports pack.

险y Sawtooth Software Ipsos MORI
Ipsos

Benefits of Menu Approach

Still get price elasticity, cross effects, all the benefits of conjoint models
But now we can model the real-world complexity of actual decision making process

Case study

Founded
in 1965

850
restaurants
c. 60 countries worldwide 80+ UK restaurants

Value for money, quality and enhanced customer dining

Commissioned research to optimise the pricing of key dishes on their menu in order to maximise profit

In addition to individual dishes, Set menu deals which bundle together multiple courses also offered

Analysis needed to further take in to account cannibalisation to and from key competitors

.

Study details

Sample

Choice Design

Questionnaire flow

1 . Screening

U\&A demographic and screening questions

Most recent occasion
Satisfaction ratings

2. Stage 1 - CBC

Determine cannibalisation to/from TGI Fridays

Choose most preferred competitor
menu (Fixed price - Single choice)
Choice Based Conjoint exercise with
TGI Fridays menu vs. winning competitor menu

Only TGI Friday's prices changing

3. Stage 2 - MBC

Determine choice/price sensitivity within the TGI Fridays menu

MBC exercise with the price of all dishes varying each time

Option to choose none of the dishes and leave the restaurant

Example screenshots

Stage 1 - CBC

θ

0

Stage 2 - MBC

[^0]
Modelling considerations

\square Given the choices above, I would leave this restaurant without eating

Note: Survey data on last occasion suggested c.96\% chose a main course

Analysis Stage 1

CBC model to gauge change in footfall as a result of changes in menu price

At the base case TGI Fridays obtained 32% preference share

Changes to this value would alter the number of customers that would go in to a TGI Fridays in an average month which then feeds in to profit calculation

Analysis Stage 2

MBC model to gauge change in preference for the different menu items as price changes

Data weighted by how often they go to TGI Fridays

Checking results

Sensitivity of each item as other items change price

		Effect on dish																			
		S1	S2	S3	S4	S5	VM1	VM2	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	D1	D2	DR1
	S1		0.7	0.1	1.1	0.0	-.0.5	-0.3	-0.6	0.0	-0.1	0.0	-0.1	0.1	0.0	-0.1	-0.2	0.0	0.1	-0.4	-0.1
	S2	0.4		1.0	2.8	0.1	-0.9	-0.5	-0.8	-0.4	0.1	-0.3	0.1	0.1	0.0	0.1	0.1	0.0	-0.4	0.2	0.8
	S3	0.1	1.2		0.9	0.0	0.5	0.7	-0.6	-0.1	-0.2	-0.1	0.1	0.1	0.0	-0.2	-0.3	-0.2	0.0	0.1	-0.2
	S4	0.7	0.7	0.8		0.2	-0.4	0.3	-0.7	-0.4	0.1	-0.4	-0.1	-0.1	-0.2	-0.1	-0.2	-0.2	-0.2	-0.2	-0.1
	S5	0.0	0.1	0.0	0.2		0.0	-0.3	-0.2	0.0	0.1	0.0	-0.2	0.0	-0.1	0.2	0.0	-0.3	-0.5	0.7	1.1
-	VM1	0.3	0.5	0.2	0.4	0.5		2.9	1.3	0.1	0.1	0.5	0.3	0.1	0.0	0.3	0.5	0.4	0.8	0.6	0.5
-	VM2	0.0	0.3	0.1	0.1	-0.1	4.1		-0.1	0.0	0.0	0.2	-0.1	-0.1	0.0	-0.1	0.0	0.1	-0.5	-0.1	-0.6
$\stackrel{\circ}{7}$	M1	-0.2	-0.8	-0.1	-0.5	0.0	1.9	0.3		1.8	0.2	1.4	0.1	0.1	0.1	0.3	0.8	0.9	-0.9	-0.9	0.2
응	M2	-0.1	-0.1	-0.1	0.1	0.0	0.2	0.2	22		0.1	0.9	0.1	0.2	0.1	0.5	0.5	0.8	-0.8	-0.5	0.5
은	M3	-0.1	-0.3	0.0	0.4	0.0	0.0	-0.2	0.1	0.0		0.1	0.1	0.0	0.0	0.1	0.0	0.0	1.0	0.3	0.3
$\stackrel{C}{0}$	M4	0.1	-0.3	-0.2	0.1	0.0	0.2	0.3	0.9	0.5	0.3		0.2	0.1	0.1	0.2	0.3	0.4	0.1	0.0	-0.4
"	M5	0.2	0.4	0.1	-0.1	0.1	0.1	-0.2	0.0	0.0	0.1	0.2		0.0	0.0	0.1	0.0	0.0	0.7	-0.1	0.1
-	M6	0.2	0.1	0.0	0.4	0.0	-0.4	-0.1	0.1	0.1	0.0	0.3	0.1		0.2	0.2	0.2	0.0	-0.4	-0.3	0.0
- 득	M7	-0.1	-0.6	0.0	-0.6	0.2	-0.9	-0.5	0.1	0.2	0.0	0.2	0.0	0.2		0.4	0.2	0.0	0.4	-0.1	-0.8
둗	M8	0.0	0.4	0.1	0.1	0.0	-0.2	0.1	0.2	0.4	0.0	0.2	0.1	0.1	0.3		0.2	0.2	0.0	0.0	0.8
	M9	0.1	-0.4	-0.1	-0.9	0.0	1.6	0.0	0.8	0.4	0.0	0.5	0.1	0.1	0.2	0.4		0.7	-1.4	-0.9	-0.3
	M10	0.3	0.3	0.1	1.1	0.4	0.2	-0.5	0.7	0.5	0.0	0.4	0.0	0.1	0.0	0.1	0.5		0.9	0.9	1.2
	D1	-0.1	-0.3	0.0	-0.4	0.0	0.6	0.4	1.0	-0.5	-0.2	-0.4	-0.1	-0.1	0.0	0.0	-0.4	-0.3		3.0	0.0
	D2	0.1	0.4	0.2	0.7	-0.2	-1.6	0.0	-0.2	0.0	0.2	0.1	0.1	0.1	0.0	0.0	0.0	-0.2	3.7		0.0
	DR1	-0.1	0.3	0.0	0.4	0.0	0.7	0.1	0.1	0.0	0.1	0.1	0.0	0.0	0.1	0.1	0.1	0.0	0.6	-0.1	

Within category all cross-effects should be positive

Cross-effects outside category
should be a mixture of positive and negative effects

Profit optimisation

Ultimate goal of the project was to increase net profit so analysis needed to show best combination of prices

1

Stage 1

- Determine \# monthly covers

Stage 2

Determine volume of each dish

3

Client data
Provided all fixed and variable costs

Optimisation analysis done via Oracle Crystal Ball software

In 3 months, net profit

 has increased by31\%
vs. previous year (same stores), and significantly higher than in the control restaurants (12%)

Real world results

In 3 months, net profit has increased by 31% vs. previous year (same stores), and significantly higher than in the control restaurants

	Test restaurants Jan - Mar	Control restaurants Jan - Mar
Average number of covers	118	106
Average total weekly sales	114	106
Average total weekly profit	131	112
Average spend per head (core food)	96	99
Average customer satisfaction score	125	121

[^1]

MBC Tips

MBC projects can become complex and expensive very quickly. Be pragmatic!

MBC Tips

Simpler models i.e. less cross-effects tend to work better. Only include significant effects

MBC Tips

Include holdout tasks to check the validity of your model

MBC projects can become complex and expensive
very quickly. Be pragmatic!

Simpler models i.e. less cross-effects tend to work better. Only include significant effects

MBC Tips

If optimising for revenue/profit do not rely on the None option

MBC projects can become complex and expensive very quickly. Be pragmatic!

Include holdout tasks to check the validity of your model

Simpler models i.e. less cross-effects tend to work better. Only include significant effects

MBC Tips

MBC is very data hungry in order to model crosseffects. $\mathrm{N}=1000$ is a good starting point

MBC projects can become complex and expensive very quickly. Be pragmatic!

Include holdout tasks to check the validity of your model

Simpler models i.e. less cross-effects tend to work better. Only include significant effects

If optimising for revenue/profit do not rely on the None option

MBC Tips

Context is extremely important - What is the occasion? Who is buying? Are there different menus by time?

MBC projects can become complex and expensive
very quickly. Be pragmatic!

Include holdout tasks to check the validity of your model

Simpler models i.e. less cross-effects tend to work better. Only include significant effects

If optimising for revenue/profit do not rely
on the None option

MBC is very data hungry in order to model crosseffects. $N=1000$ is a good starting point

MBC Tips

Don't under-estimate the time needed in the set-up phase

MBC projects can become complex and expensive very quickly. Be pragmatic!

Include holdout tasks to check the validity of your model

MBC is very data hungry in order to model crosseffects. $\mathrm{N}=1000$ is a good starting point

Simpler models i.e. less cross-effects tend to work better. Only include significant effects

If optimising for revenue/profit do not rely on the None option

Context is extremely important - What is the occasion? Who is buying? Are there different menus by time?

IHANK YOU.

[^0]: \square Given the choices above, I would leave this restaurant without eatin

[^1]: Note: Index score vs. previous year (100) - Profit adjusted for uncontrollable costs

