

THE DIGITAL ADVANTAGE
LEADING CHANGE
WHEN STATUS QUO
RESEARCH IS NO
LONGER AN OPTION

KANDICE COLTRAIN VICE PRESIDENT, BUSINESS DEVELOPMENT AYTM

1. HOW **TECHNOLOGY** CAN BE USED TO HELP **MANAGE STAKEHOLDER EXPECTATIONS**.

- 2. SIMPLE WAYS TO **EXECUTE COMPLEX RESEARCH** TESTS
- 3. HOW TO BE CONFIDENT YOUR **TECHNOLOGY PARTNER** IS SUPPLYING THE HIGHEST QUALITY DATA.
- 4. PRACTICAL ADVICE FOR ENSURING YOUR **TECHNOLOGY** PARTNERSHIPS ARE **FLEXIBLE AND ADAPTABLE**.

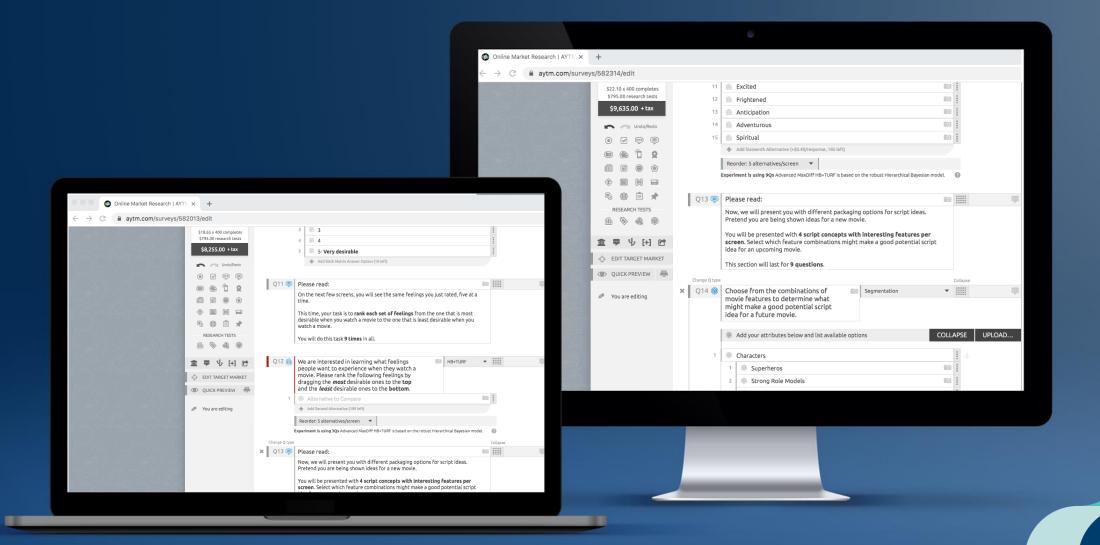
GRIT 2019 TOP 50 INNOVATIVE COMPANY

AYTM MARKET RESEARCH PLATFORM

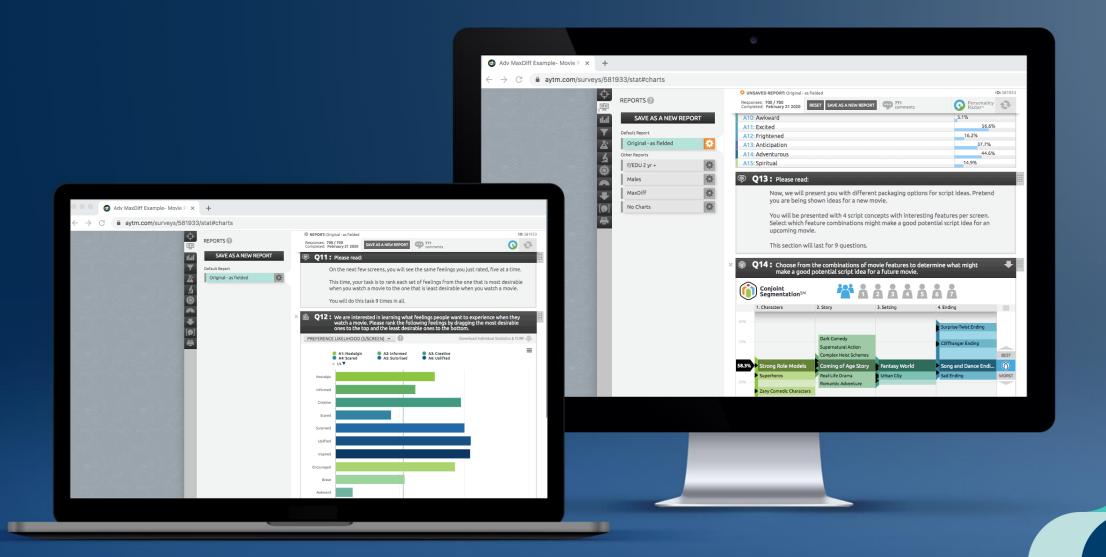
Top-rated proprietary and partner consumer panels reaching over 60MM respondents globally

SURVEY PLATFORM

An easy but powerful selfservice survey platform with advanced research tests powered by automation


RESEARCH SERVICES

Professional stats and visualization tools. Friendly support, expert Research Teams, and training tools that make your job easier



MEETING STAKEHOLDER EXPECTATIONS

MEETING STAKEHOLDER EXPECTATIONS

TURF

Conjoint

Van Konan

KANO

SUCCESS METRICS

3,776 DAYS 3-24 HRS 2-3 DAYS

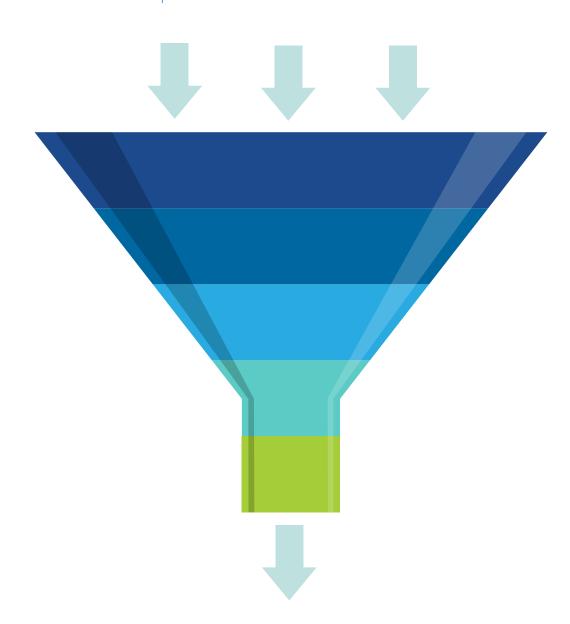
TIME SAVED FOR **DISCRETE CHOICE**

MAXDIFF RESULTS **VS.4 WEEKS**

CONJOINT RESULTS VS.5 WEEKS

Poor data quality

CHAIN REACTION



Business decisions that move the brand in the wrong direction

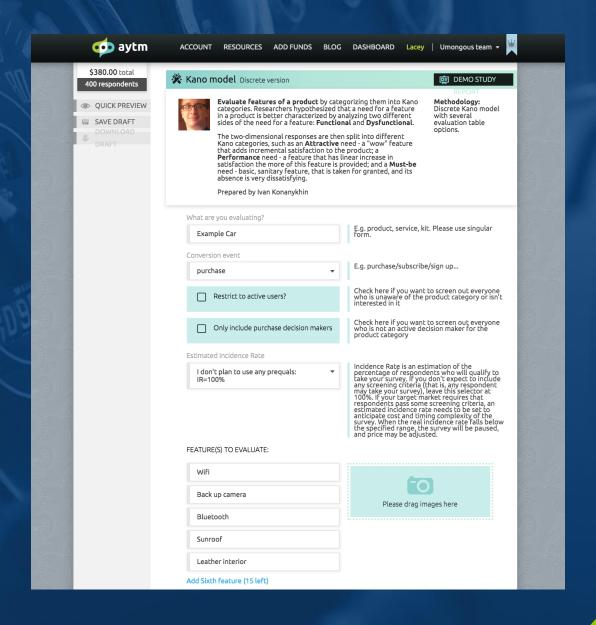
Lower market share Erodes
the trust
built with
stakeholders

Negatively impact your company's ability to understand the consumer

- 1 REMOVE BOTS
 Fraudulent activity
- 2 REMOVE DUPLICATES

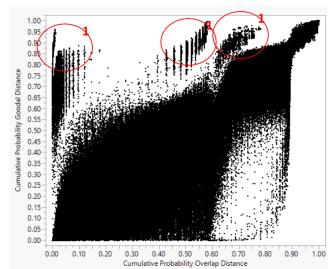
 Multiple ID/devices digital fingerprinting
- 3 VERIFY TARGET AUDIENCE
 Representativity PII, sampling methodology
- 4 VERIFY RESPONSE QUALITY
 Open-ends, Red herring, Prequal masking
- 4 OVERALL EXPERIENCE
 And fielding speed

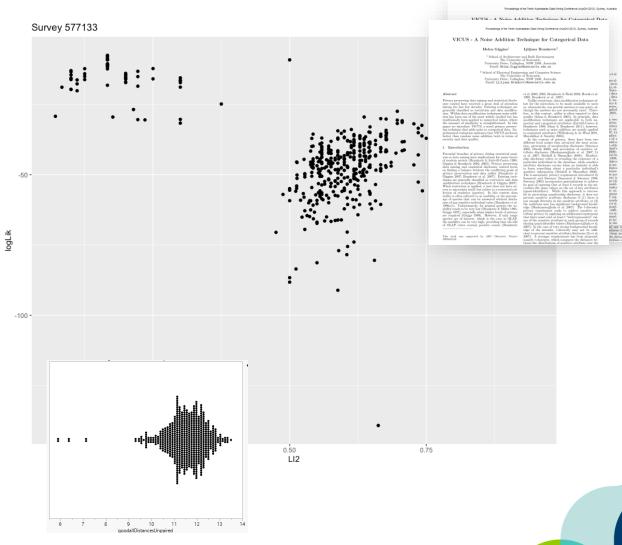
WHAT TO LOOK FOR IN A TECHNOLOGY PARTNER - FLEXIBILITY

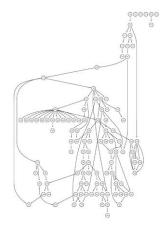


WHAT TO LOOK FOR IN A TECHNOLOGY PARTNER - FLEXIBILITY

AMERICAN CAR COMPANY




WHAT TO LOOK FOR IN A TECHNOLOGY PARTNER - REPUTATION + THOUGHT LEADERSHIP


$\begin{split} &= \left\{\begin{array}{ll} + & i \mathcal{L}_{2} \times \mathcal{L}_{3} \\ &= \left\{\begin{array}{ll} - & i \mathcal{L}_{3} \times \mathcal{L}_{3} \\ \mathcal{L}_{3} & \mathcal{L}_{3} \times \mathcal{L}_{3} \\ \mathcal{L}_{3} & \mathcal{L}_{3} \times \mathcal{L}_{3} \\ &= \left\{\begin{array}{ll} - & i \mathcal{L}_{3} \times \mathcal{L}_{3} \\ \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \\ \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \\ \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \\ \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \\ \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \\ \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \\ \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \\ \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \\ \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \\ \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \\ \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \\ \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \\ \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \\ \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \times \mathcal{L}_{3} \\ \mathcal{L}_{3} \times \mathcal{L}_{3} \\ \mathcal{L}_{3} \times \mathcal{L}_{3} \\ \mathcal{L}_{3} \times \mathcal{L}_{3} \\ \mathcal{L}_{3} \times \mathcal{L}_$	\$\frac{1}{2}\$ \$\
$\begin{split} &= \left\{ \begin{array}{ll} & \text{if } X_1 = Y_2 \\ & \text{if } X_1 = Y_2 \text{ in the times} \\ &= \left\{ \begin{array}{ll} & \text{if } X_1 = Y_2 \\ & \text{if } X_1 = Y_2 \\ & \text{otherwise} \end{array} \right. \\ &= \left\{ \begin{array}{ll} & \text{if } X_1 = Y_2 \\ & \text{otherwise} \end{array} \right. \\ &= \left\{ \begin{array}{ll} & \text{if } X_1 = Y_2 \\ & \text{otherwise} \end{array} \right. \\ &= \left\{ \begin{array}{ll} & 2 \log (X_1 + Y_1) \\ & 2 \log (X_1 + Y_1) \\ & 2 \log (X_1 + Y_2) \\ & 2 \log (X_1 + Y_2) \end{array} \right. \\ &= \left\{ \begin{array}{ll} & \sum_{i \in \mathcal{N}} \log (X_1 - Y_1) \\ & 2 \log (X_1 - Y_2) \\ & 2 \log (X_1 - Y_2) \end{array} \right. \\ &= \left\{ \begin{array}{ll} & \sum_{i \in \mathcal{N}} \log (X_1 - Y_1) \\ & 2 \log (X_1 - Y_2) \end{array} \right. \\ &= \left\{ \begin{array}{ll} & \sum_{i \in \mathcal{N}} \log (X_1 - Y_2) \\ & 2 \log (X_1 - Y_2) \end{array} \right. \\ &= \left\{ \begin{array}{ll} & \sum_{i \in \mathcal{N}} \log (X_1 - Y_2) \\ & 2 \log (X_1 - Y_2) \end{array} \right. \\ &= \left\{ \begin{array}{ll} & \sum_{i \in \mathcal{N}} \log (X_1 - Y_2) \\ & 2 \log (X_1 - Y_2) \end{array} \right. \\ &= \left\{ \begin{array}{ll} & \sum_{i \in \mathcal{N}} \log (X_1 - Y_2) \\ & 2 \log (X_1 - Y_2) \end{array} \right. \\ &= \left\{ \begin{array}{ll} & \sum_{i \in \mathcal{N}} \log (X_1 - Y_2) \\ & 2 \log (X_1 - Y_2) \end{array} \right. \\ &= \left\{ \begin{array}{ll} & \sum_{i \in \mathcal{N}} \log (X_1 - Y_2) \\ & 2 \log (X_1 - Y_2) \end{array} \right. \\ &= \left\{ \begin{array}{ll} & \sum_{i \in \mathcal{N}} \log (X_1 - Y_2) \\ & 2 \log (X_1 - Y_2) \end{array} \right. \\ &= \left\{ \begin{array}{ll} & \sum_{i \in \mathcal{N}} \log (X_1 - Y_2) \\ & 2 \log (X_1 - Y_2) \end{array} \right. \\ &= \left\{ \begin{array}{ll} & \sum_{i \in \mathcal{N}} \log (X_1 - Y_2) \\ & 2 \log (X_1 - Y_2) \end{array} \right. \\ &= \left\{ \begin{array}{ll} & \sum_{i \in \mathcal{N}} \log (X_1 - Y_2) \\ & 2 \log (X_1 - Y_2) \end{array} \right. \\ &= \left\{ \begin{array}{ll} & \sum_{i \in \mathcal{N}} \log (X_1 - Y_2) \\ & 2 \log (X_1 - Y_2) \end{array} \right. \\ &= \left\{ \begin{array}{ll} & \sum_{i \in \mathcal{N}} \log (X_1 - Y_2) \\ & 2 \log (X_1 - Y_2) \end{array} \right. \\ &= \left\{ \begin{array}{ll} & \sum_{i \in \mathcal{N}} \log (X_1 - Y_2) \\ & 2 \log (X_1 - Y_2) \end{array} \right. \\ &= \left\{ \begin{array}{ll} & \sum_{i \in \mathcal{N}} \log (X_1 - Y_2) \\ & 2 \log (X_1 - Y_2) \end{array} \right. \\ &= \left\{ \begin{array}{ll} & \sum_{i \in \mathcal{N}} \log (X_1 - Y_2) \\ & 2 \log (X_1 - Y_2) \end{array} \right. \\ &= \left\{ \begin{array}{ll} & \sum_{i \in \mathcal{N}} \log (X_1 - Y_2) \\ & 2 \log (X_1 - Y_2) \end{array} \right. \\ &= \left\{ \begin{array}{ll} & \sum_{i \in \mathcal{N}} \log (X_1 - Y_2) \\ & 2 \log (X_1 - Y_2) \end{array} \right. \\ \\ &= \left\{ \begin{array}{ll} & \sum_{i \in \mathcal{N}} \log (X_1 - Y_2) \\ & 2 \log (X_1 - Y_2) \end{array} \right. \\ \\ &= \left\{ \begin{array}{ll} & \sum_{i \in \mathcal{N}} \log (X_1 - Y_2) \\ & 2 \log (X_1 - Y_2) \end{array} \right. \\ \\ &= \left\{ \begin{array}{ll} & \sum_{i \in \mathcal{N}} \log (X_1 - Y_2) \\ & 2 \log (X_1 - Y_2) \end{array} \right. \\ \\ &= \left\{ \begin{array}{ll} & \sum_{i \in \mathcal{N}} \log (X_1 - Y_2) \\ & 2 \log (X_1 - Y_2) \end{array} \right. \\ \\ &= \left\{ \begin{array}{ll} & \sum_{i \in \mathcal{N}} \log (X_1 - Y_2) \\ & 2 \log (X_1 - Y_2) \end{array} \right. \\ \\ &= \left\{ \begin{array}{ll} & \sum_{i \in N$	$\begin{array}{c} \frac{1}{2} \\ \\ \sum_{i=1}^{m} \max_{j \in \{i,j\} : i \in \operatorname{sup}_{j}(n)\}} \\ \\ \sum_{i=1}^{m} \sum_{j \in \operatorname{sup}_{j}(n)} \sum_{j \in \operatorname{sup}_{j}(n)} \\ \\ \frac{1}{2} \end{array}$
$\begin{cases} &1 & \text{if } X_{\lambda} = Y_{\lambda} \\ &1 & \text{otherwise} \end{cases}$ $= \begin{cases} &1 & \text{otherwise} \\ &2 \log_{10}(X_{\lambda}) + \log_{10}(Y_{\lambda}) \end{cases}$ $= \begin{cases} &2 \log_{10}(X_{\lambda}) + \beta_{\lambda}(Y_{\lambda}) \\ &2 \log_{10}(X_{\lambda}) + \beta_{\lambda}(Y_{\lambda}) \end{cases}$ $= \begin{cases} &1 & \text{otherwise} \\ &2 \log_{10}(X_{\lambda}) + \beta_{\lambda}(Y_{\lambda}) \end{cases}$ $= \begin{cases} &1 & \text{otherwise} \\ &2 \log_{10}(X_{\lambda}) + \beta_{\lambda}(Y_{\lambda}) \end{cases}$ $= \begin{cases} &1 & \text{otherwise} \\ &0 & \text{otherwise} \end{cases}$	$\begin{array}{c} \frac{1}{2} \\ \sum_{m=0}^{\infty} \log p_{ij}(k_{ij}) + \log p_{ij}(k_{ij}) \\ \\ \sum_{m=0}^{\infty} \sum_{k \in \mathbb{N}} \log p_{ij}(k) \end{array}$
$\begin{split} & \left\{ \begin{array}{ll} \operatorname{trian} \sup_{X \in \mathcal{X}_{N}} \operatorname{statember} \\ & \left\{ \begin{array}{ll} \operatorname{2log}_{X}(X_{1}) + \mu_{X}(X_{2}) \\ \operatorname{2log}_{X}(X_{1}) + \mu_{X}(X_{2}) \\ \end{array} \right. \\ & \left\{ \begin{array}{ll} \operatorname{2log}_{X}(X_{1}) + \mu_{X}(X_{2}) \\ \operatorname{2log}_{X}(X_{2}) + \mu_{X}(X_{2}) \\ \end{array} \right. \\ & \left\{ \begin{array}{ll} \sum_{X \in X} \operatorname{log}_{X}(y) & \text{if } X_{N} = Y_{1} \\ \operatorname{2log}_{X}(X_{N}) + \mu_{X}(X_{N}) \\ \end{array} \right. \\ & \left\{ \begin{array}{ll} -\sum_{X \in X} \mu_{X}(y) & \text{if } X_{N} = Y_{1} \\ \operatorname{statember} \end{array} \right. \\ & \left\{ \begin{array}{ll} -\sum_{X \in X} \mu_{X}(y) & \text{if } X_{N} = Y_{2} \\ \operatorname{statember} \end{array} \right. \\ & \left\{ \begin{array}{ll} -\sum_{X \in X} \mu_{X}(y) & \text{if } X_{N} = Y_{2} \\ \operatorname{statember} \end{array} \right. \end{split}$	$\begin{array}{c} \vdots \\ \sum_{i=1}^{n} \log p_i(Y_i) \operatorname{diag} g_i(Y_i) \\ \\ \sum_{i=1}^{n} \sum_{a \in \mathcal{B}} \log p_i(a) \end{array}$
$\begin{split} &= \left\{ \begin{array}{ll} \sum_{i \in \mathcal{Q}} \log p_i(u) & \text{if } X_h = V_h \\ 2\log \sum_{u \in \mathcal{Q}} p_i(u) & \text{otherwise} \\ \\ &= \left\{ \begin{array}{ll} 1 - \sum_{u \in \mathcal{Q}} p_i^2(u) & \text{if } X_h = V_h \\ 0 & \text{otherwise} \end{array} \right. \end{split}$	$\frac{\sum_{i=1}^{N}\sum_{g\in\mathcal{G}}^{\frac{1}{2}\log g_{i}(g)}}{\frac{1}{2}}$
$= \begin{cases} 1 - \sum_{g \in Q} p_g^2(g) & \text{if } X_k = V_k \\ 0 & \text{otherwise} \end{cases}$	i
$= \begin{cases} 1 - \sum_{g \in Q} g_g^2(g) & \text{if } X_0 = Y_k \\ \end{array}$	à
$= \left\{ \begin{array}{ll} 1 - p_k^2(X_k) & \text{if } X_k = Y_k \\ 0 & \text{otherwise} \end{array} \right.$	å
$= \left\{ \begin{array}{ll} p_{k}^{0}(X_{k}) & \text{if } X_{k} = Y_{k} \\ 0 & \text{otherwise} \end{array} \right.$	á
$\begin{split} &\sum_{\substack{(X_0 \mid X_0 \mid 1 \\ (X_0 \mid X_0 \mid 1)}} + \sum_{\substack{a \in \{A_0 \mid X_0 \mid 1 \\ B \neq (a) \\ N = f_0(a)}} &\frac{f_0(a)}{N - f_0(a)} & \text{ if } X_0 = Y_0 \\ &\text{ sthere is } \end{split}$	$\sum_{k=1}^{p} u_k$
$ \begin{array}{ll} - g_k(X_k) \log_2\beta_k(X_k)+&\text{if }X_k=Y_k\\ (1-\beta_k(X_k))(\log_2(1-\beta_k(X_k))) &\text{otherwise} \end{array} $	$\frac{1}{\sum_{n=1}^{2} n_{n}}$
$\sum_{\substack{(a,b,b_k)\\ (a+b_k)}} 2\log(1-du(u))$ if $X_k = Y_k$ afterwise	30
	$ \begin{aligned} &\langle y_n(X_k)\rangle \log_2 g_k(X_k) \rangle \\ &\langle y_n(X_k)\rangle \log_2 g_k(X_k) \rangle \\ &\langle z_n(X_k)\rangle (\log_2 (1-g_k(X_k))) \end{aligned} \text{otherwise} \\ &\langle X_k - Y_k \rangle \end{aligned} $

Cluster Dendrogram

100 120 140

80

DIGITAL TRANSFORMATION BENEFITS

	Traditional MR Firms	AYTM Platform
Survey Design & Programming:	2 weeks	24-72 hours
Fielding/ Data Collection:	1-2 weeks	24-48 hours (unless low IR audience)
Reporting & Analysis:	1-2 weeks	data available in real-time in STATS page
Costs:	One price fits all (\$50K+)	A la carte pricing; overall savings 30%+ depending on study objectives

\$2,000-\$5,000 (varies based on sample size)

\$10,000 - \$25,000 + (varies based on services needed)

