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So what?

« Financial impact (lost revenue)
« Wasted resources (physician idle time)
« Extra admin time to reschedule

* Impact on patient care

« Other patients could have come

* The no-show patient misses treatment

« No-shows occur in other fields as well

(e.g., aviation, hospitality, and any pre-appointed meetings)
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Common No-Show Remediation

SMS/IVR Human Reminder Overbooking
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Common No-Show Remediation

And why they fail...

Hi Jim. This is Sandra
from Dr. Brown's .
office. Just a reminder
about your utogommg

a intment on

onday at 10:30 am.

See you then.

SMS/IVR
Limited Effect

Human Reminder

L abor Intensive

Overbooking

Lowers
Service Level




How to Predict a No-Show?

* No-show predictions allow for targeted interventions

 We analyzed 8 million appointment records of a large HMO
« Specific healthcare field, with a 24% no-show rate

* We created an Al model to predict no-shows

« Saving millions of dollars
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Methodology Pipeline: Building a Model

Data retrieval

Pulling millions of records with relevant
features, cleaning and preparing data

Exploratory data analysis

Initial exploration, analyzing variable
relationships, visualizations, feature
engineering

Model implementation

Incorporation of models in real-time
business processes

Model evaluation

Performance evaluation, analysis of
business implications

Model training

Running machine learning algorithms to
train Al models
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Features That Correlate With No-Shows

(Some Examples)

° Age
Demographic features e  Historic no-show rate
° Socio-economic status

° Distance to clinic

Geographic features

° City
Reminder outcomes ° SMS/IVR outcome: confirmation / no-answer
° Day of week
Appointment scheduling e  Cyclic scheduling (7-days cycle)
parameters e Season
° Scheduling method (call center/clinic/online)

Overall, the model incorporates 32 different features relating to these four groups
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Model Accuracy and Usefulness

Sensitivity = Detect actual no-show (True-Positive); Specificity = Detection actual shows (1 - False-Positive)

Precision = Actual no-shows out of total detected no-shows

Predicted No-Show

Actual No- e  Model Hits (True-Positive)
Show 50% (Sensitivity)

Actual e Noise (False-Positive)
Show 20% (1-Specificity)

Predicted Show

Model Misses (False-Negative)
50% (1-Sensitivity)

Model OK (True-Negative)
80% (Specificity)
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Model Accuracy and Usefulness

Sensitivity = Detect actual no-show (True-Positive); Specificity = Detection actual shows (1 - False-Positive)
Precision = Actual no-shows out of total detected no-shows

Predicted No-Show Predicted Show

Actual No- Model Hits (True-Positive) Model Misses (False-Negative)
Show 50% (Sensitivity) 50% (1-Sensitivity)

Actual Noise (False-Positive) Model OK (True-Negative)
Show 20% (1-Specificity) 80% (Specificity)

Out of 100 random patients:

24 are no-shows, 12 were detected
76 are shows, ~15 were falsely flagged as no-show

—_— The model’s precision is 44.4% = 12/(12+15) I
e 'SARID




From Model to Actionable Recommendations

 The Al model outputs predictions in the range of 0-1
« 0 = high confidence for show, 1 = high confidence for no-show
« We can set a desired threshold to tune sensitivity <> noise
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From Model to Actionable Recommendations

« The Al model outputs predictions in the range of 0-1

« 0 = high confidence for show, 1 = high confidence for no-show
« We can set a desired threshold to tune sensitivity <> noise

High threshold for no-shows,
Less detections, higher confidence

Human phone call

Overbooking

O
)
e
n
Q
Lo
e
ra
-
(O]
wn

Human phone call
Low threshold,
More detections, more noise

Overbooking if > 2 appt
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Interactive Sim: Engaging Decision-Makers

Al Is hard to explain, therefore, its hard to trust.
How can you increase trust in models? No-Show sim

e

Predict (individual prediction screen)

In this screen you can see the no-show probability and the estimated duration of specific meetings.
Change the parameters below and click on "Predict" to see how they affect the expected no-show/duration.

ElPredict | Personalized Recommendations

° Expected Appointment Duration [min]
13.4
Appointment related information =

Reminder method Response to reminder

Esms () Phone Call (Human)

Received message -
[CJPhone Call (IVR)
Source

Clinic M

Creation date Appointment time

2022-05-20 & 2022-06-2311:06 &
Treatment Planned duration [minutes]
Xray e 15 B

e No-show Rating
26%

Patient's data

Age

40

Gender

Male -

Previous no-shows

1

Insurance Type

Platinum Insurance -

Outstanding balance

0 -

Patient city of residence

TELAVIV - YAFO v

>

/ Calendar predictions
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Interactive Sim: Engaging Decision-Makers

Al Is hard to explain, therefore, its hard to trust.
How can you increase trust in models? Potential Savings

| ==
Annual meetings Threshold

Human phone call
COSt p Confusion Matrix NO-ShOW COSt

Model
performance
(at threshold)

Total savings o
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Implementation: Turning the Model into a Production
Solution (work In progress)

c Service Development e Real-Time Utilization

The model is converted into a scalable
robust service with the predetermined
threshold

The service is regularly invoked to provide
actionable recommendations (e.g., calls,
overbooking strategies)

a Integration a Continuous Improvements

The service is seamlessly integrated into A feedback loop monitors performance

the organization’s workflow, automating and iteratively enhances the model based
interactions to minimize manual on new data

intervention
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Summary and Conclusions

« Utilizing Large-Scale Transactional Data: Enhancing real-time decision-making
through data science and Al

« Practical Value of Models: Models don’t have to be perfect; even moderately accurate
models can significantly improve outcomes

« Building Trust with Interactive Simulators: Using interactive simulators to explain
models and gain stakeholder trust

« Automating Processes with Model Implementation: Integrating the predictive model

as a service to streamline and automate operational processes
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Get In Touch:
Dr. Adi Sarid
adi@sarid-ins.co.ll

https://www.sarid-Iins.com
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